Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Anal Chim Acta ; 1264: 341283, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: covidwho-2310886

RESUMEN

In resource-limited conditions such as the COVID-19 pandemic, on-site detection of diseases using the Point-of-care testing (POCT) technique is becoming a key factor in overcoming crises and saving lives. For practical POCT in the field, affordable, sensitive, and rapid medical testing should be performed on simple and portable platforms, instead of laboratory facilities. In this review, we introduce recent approaches to the detection of respiratory virus targets, analysis trends, and prospects. Respiratory viruses occur everywhere and are one of the most common and widely spreading infectious diseases in the human global society. Seasonal influenza, avian influenza, coronavirus, and COVID-19 are examples of such diseases. On-site detection and POCT for respiratory viruses are state-of-the-art technologies in this field and are commercially valuable global healthcare topics. Cutting-edge POCT techniques have focused on the detection of respiratory viruses for early diagnosis, prevention, and monitoring to protect against the spread of COVID-19. In particular, we highlight the application of sensing techniques to each platform to reveal the challenges of the development stage. Recent POCT approaches have been summarized in terms of principle, sensitivity, analysis time, and convenience for field applications. Based on the analysis of current states, we also suggest the remaining challenges and prospects for the use of the POCT technique for respiratory virus detection to improve our protection ability and prevent the next pandemic.


Asunto(s)
COVID-19 , Virus , Humanos , Pruebas en el Punto de Atención , Pandemias
2.
Biosensors (Basel) ; 11(10)2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1480583

RESUMEN

The critical risk from airborne infectious diseases, bio-weapons, and harmful bacteria is currently the highest it has ever been in human history. The requirement for monitoring airborne pathogens has gradually increased to defend against bioterrorism or prevent pandemics, especially via simple and low-cost platforms which can be applied in resource-limited settings. Here, we developed a paper-based airborne bacteria collection and DNA extraction kit suitable for simple application with minimal instruments. Airborne sample collection and DNA extraction for PCR analysis were integrated in the paper kit. We created an easy-to-use paper-based air monitoring system using 3D printing technology combined with an air pump. The operation time of the entire process, comprising air sampling, bacterial cell lysis, purification and concentration of DNA, and elution of the DNA analyte, was within 20 min. All the investigations and optimum settings were tested in a custom-designed closed cabinet system. In the fabricated cabinet system, the paper kit operated effectively at a temperature of 25-35 °C and 30-70% relative humidity for air containing 10-106 CFU Staphylococcus aureus. This paper kit could be applied for simple, rapid, and cost-effective airborne pathogen monitoring.


Asunto(s)
Microbiología del Aire , Bacterias , ADN Bacteriano , Bacterias/genética , Bioterrorismo , ADN Bacteriano/análisis , Humanos , Manejo de Especímenes , Temperatura
3.
Analyst ; 146(13): 4212-4218, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: covidwho-1253999

RESUMEN

Molecular detection of pathogenic nucleic acids from patient samples requires incubating biochemical reactions at specific temperatures to amplify DNA. This incubation is typically carried out with an electrical heater and a temperature controller. To reduce test cost, to eliminate the need for manufacturing incubators, which may require significant time, and to enable electricity-free operation, we use energetic compounds such as an Mg(Fe) alloy mixed with a phase-change material (PCM) that undergoes phase transformation at the desired incubation temperature. We dubbed this composite Energetic Phase Change Material (EPCM). When the EPCM is brought into contact with water, the magnesium alloy interacts with the water to produce heat. The EPCM heats up to its phase transition temperature. Any excess heat is absorbed as latent heat and the system is maintained at its desired incubation temperature, independent of ambient temperatures, long enough to facilitate enzymatic amplification. The EPCM together with colorimetric amplicon detection facilitates an inexpensive, disposable, point-of-need diagnostic test that does not require any electric power. We demonstrate the feasibility of our approach by detecting SARS-Cov-2 in saliva samples either without any instrumentation or with a palm-size CCD camera that enables us to follow the amplification process in real time.


Asunto(s)
COVID-19 , ADN/genética , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , SARS-CoV-2 , Saliva
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA